A Dynamic Parametrization Scheme for Shape Optimization Using Quasi-Newton Methods

نویسندگان

  • John T. Hwang
  • Joaquim R. R. A. Martins
چکیده

A variable parametrization scheme is developed and demonstrated for shape optimization using quasi-Newton methods. The scheme performs adaptive parametrization refinement while preserving the approximate Hessian of the shape optimization problem and enables free-form shape design using quasi-Newton optimization methods. Using a Bspline parametrization, the scheme is validated using a 1-D shape approximation problem and is shown to improve efficiency and optimal solution quality compared to the traditional quasi-Newton method. The scheme is also applied to a 3-D test problem, demonstrating the feasibility of free-form shape optimization using parametrization refinement and a method for partially constraining the degrees of freedom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

Optimization Methods on Riemannian Manifolds and Their Application to Shape Space

We extend the scope of analysis for linesearch optimization algorithms on (possibly infinitedimensional) Riemannian manifolds to the convergence analysis of the BFGS quasi-Newton scheme and the Fletcher–Reeves conjugate gradient iteration. Numerical implementations for exemplary problems in shape spaces show the practical applicability of these methods.

متن کامل

On the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization

We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...

متن کامل

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012